江苏泓博新材料有限公司 年产500万千米光缆加强芯项目一阶段 竣工环境保护验收监测报告表

建设单位: 江苏泓博新材料有限公司

编制单位: 泰州迪特西科技有限公司

2022年6月

建设单位法人代表: (签字)

编制单位法人代表: (签字)

项 目 负责 人:丁峰

填 表 人:钱图

建设单位 (盖章) 编制单位 (盖章)

电话: 13806167212 电话: 15996006789

传真:/

邮编: 225300

地址: 泰兴市黄桥工业园区兴园路以南、永丰 地址: 泰州市海陵区梅兰东路 93 号

路以东

表一

建设项目名称	年产	500 万千米光缆加强芯	芯项目一阶!	段	
建设单位名称	江苏泓博新材料有限公司				
建设项目性质	新建√ 改扩建 技改 迁建				
建设地点	泰兴市黄		南、永丰路	引以东	
主要产品名称		光缆加强芯			
设计生产能力		光缆加强芯 500 万千	一米/年		
实际生产能力	光缆加]强芯 200 万千米/年(项目一阶段	殳)	
建设项目环评时间	2021年11月	开工建设时间	20	21年9	月
调试时间	2021年12月	验收现场监测时间	2022年	5月12	日-13 日
环评报告表 审批部门	泰州市生态环境局 环评报告表 编制单位 泰州迪特西科技有限2		有限公司		
环保设施设计单位	/ 环保设施施工单位 /		/		
投资总概算	12000 万元	环保投资总概算	200万元	比例	1.67%
实际总概算	7000 万元	环保投资	140万元	比例	2.0%
验收监测依据	2、《中华人民共正); 3、《建设项目单环境部,公告 2018 年4、《建设项目单5、《关于建设工(2018)34号);6、《关于印发设通知》(环境保护部7、《江苏省排汽122号,1997年9月8、《关于印发《知》(环办环评函(9、《江苏泓博,境影响报告表》(泰州市生态	定工环境保护验收暂行 项目竣工环境保护验收 建设项目竣工环境保护 办公厅,环办(2015 5口设置及规范化整治); 污染影响类建设项目	(2018 (注) (2018	8年12月 影响类》 17年11 竹通 及 苏 (月 29 日修) (生态 月 20 日) (苏环办 查要点的 控 (1997) 控 (>的通

根据环评及批复,污染物排放执行以下标准:

1、废水排放标准:

本项目废水主要为生活污水,生活污水经预处理达标后黄桥工业园区污水处理厂集中处理。黄桥工业园区污水处理厂接管标准执行《污水综合排放标准》(GB8978-1996)表4中三级标准及《污水排入城镇下水道水质标准》(GB/T31962-2015)表1中A等级标准。黄桥工业园区污水处理厂出水标准执行《城镇污水处理厂污染物排放标准》(GB18918-2002)表1中一级A标准。

表 1-1 污水排放标准(单位:除 pH 值外为 mg/L)

项目	黄桥工业园区污水处理厂接管标准	污水处理厂尾水排放标准
pН	6-9(无量纲)	6-9(无量纲)
COD	500	50
SS	400	10
NH ₃ -N	35	5 (8) *
TP	8	0.5
TN	45	15

备注:括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12℃时的控制指标。

以监测评价标准、你 2、 废气排放标准:

项目废气污染物主要为粉尘、苯乙烯和非甲烷总烃。粉尘、苯乙烯和非甲烷总烃有组织排放执行《大气污染物综合排放标准》

(DB32/4041-2021) 表 1 排放标准;粉尘、苯乙烯和非甲烷总烃无组织排放执行《大气污染物综合排放标准》(DB32/4041-2021)表 3 单位边界大气污染物排放监控浓度限值,具体标准详见表 1-2。

表 1-2 本项目大气污染物排放标准

执行标准	污染物指标		最高允许 排放浓度	最高允许 排放速率	无组织排 度限值	
7/411 14/41臣	ימיאני	1870	mg/ m ³	kg/h	监控点	限值
《大气污染 物综合排放	颗粒物	其他	20	1		0.5
标准》	NMHC	其他	60	3	边界外浓 度最高点	4.0
(DB32/404 1-2021)	苯系物	其他	25	1.6		0.4

厂区内非甲烷总烃执行江苏省《大气污染物综合排放标准》 (DB32/4041-2021)表 2 厂区内 VOCs 无组织排放限值,具体排放限值见下表。

验收监测评价标准、标号、级别、限值

表 1-3 厂内挥发性有机物无组织排放限值表				
污染物指标	特别排放限 值 mg/m³	限值含义	无组织排放监控位置	
NMHC	6	监控点处 1h 平均浓度值	在厂房外设置监控点	
(非甲烷总烃)	20	监控点处任意一次浓度值	在 <i>) 厉外</i> 以且监控点	

3、噪声排放标准:

本项目东、西、南、北四个厂界噪声均执行《工业企业厂界环境 噪声排放标准》(GB12348-2008)3类标准要求,即昼间≤65dB(A), 夜间≤55dB(A)。

工程建设内容:

1、项目基本情况

江苏泓博新材料有限公司位于江苏省泰兴市黄桥工业园区兴园路以南、永丰路以东。2021年公司投资 12000万元,购置搅拌机、成缆机、挤出机、烘干机等主要设备,建设年产 500万千米光缆加强芯项目,建成后形成年产 500万千米光缆加强芯的产生能力。

项目一阶段于 2021 年 9 月开始建设, 2021 年初投产。因未批先建,被泰州市生态环境局行政处罚(泰环罚字(2022) 2-44 号)。2021 年 11 月,江苏泓博新材料有限公司委托泰州迪特西科技有限公司编制了《江苏泓博新材料有限公司年产 500 万千米光缆加强芯项目环境影响报告表》,并于 2022 年 4 月 12 日取得泰州市生态环境局的批复,批文号:泰环审(泰兴)(2022)047 号。

2022 年 5 月, 江苏泓博新材料有限公司委托泰州迪特西科技有限公司为该项目一阶段编制竣工环境保护验收报告。泰州迪特西科技有限公司接受委托后,参照生态环境部《建设项目竣工环境保护验收暂行办法》(征求意见稿)有关要求,开展相关验收调查工作,同时泰州迪特西科技有限公司委托泰科检测科技江苏有限公司于 2022 年 5 月 12 日至 5 月 13 日进行了该项目一阶段竣工验收监测并出具验收检测报告。

2、项目建设规模

(1) 环评情况

环评中,本项目用地面积 28000 平方米;购置搅拌机、成缆机、挤出机、烘干机等设备;项目建设达产达效后,形成年产光缆加强芯 500 万千米的生产能力。

(2) 实际建设情况

本项目一阶段实际生产能力为年产光缆加强芯 200 万千米,主体工程与产品方案实际建设见表 2-1。

表 2-1 本项目一阶段主体工程及产品方案

产品名称	主体工程名称(生 产线或生产车间)	设计生产能力	实际生产能力	备注
光缆加强芯	光缆加强芯生产线	500 万千米/年	200 万千米/年	与环评保持一致,剩余 产能在二阶段建设

原辅材料消耗及水平衡:

1、本项目一阶段原材料消耗见表 2-2

表 2-2 本项目一阶段原辅材料消耗一览表

序号	原辅材料名称	环评设计	一阶段实际用量	变动情况
1	玻璃纤维	2000 t/a	800 t/a	
2	不饱和聚酯树脂	150 t/a	60 t/a	
3	环氧乙烯基酯树脂	200 t/a	80 t/a	
4	重钙	45 t/a	18t/a	
5	过氧化二苯甲酰	5 t/a	2 t/a	原辅材料变动减 少量,在项目二
6	过氧化苯甲酸叔丁酯	20 t/a	8 t/a] 少里,任项日— 阶段使用。
7	硬脂酸锌	25 t/a	10 t/a	1711242414
8	喷码油墨	0.5 t/a	0.2 t/a	
9	塑料粒子	30 t/a	12 t/a	
10	木板	50m ³ /a	20m ³ /a	

2、水平衡

1) 生活用水:

项目一阶段劳动定员 30 人,全年用水 450 t/a,生活污水产生量约为 360t/a,主要污染物为 COD、SS、氨氮、总磷,经化粪池处理后,接管黄桥工业园区污水处理厂深度处理,达标后排入何韩中沟。

2) 生产用水

本项目一阶段生产用水主要为涂塑机循环冷却水,根据企业提供资料,本项目冷却水循环量为 200 t/a,补充损耗量为 6t/a。循环冷却水随生产过程部分蒸发,不外排。

项目一阶段水平衡见下图:

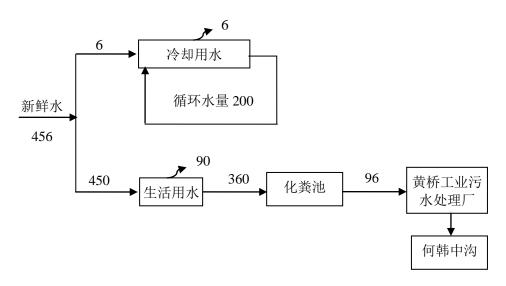


图 2-1 本项目一阶段水平衡图 单位: t/a

玻璃纤维 不饱和聚酯树脂、环氧乙烯 基酯树脂、过氧化二苯甲酰、 过氧化苯甲酰叔丁酯、重钙、 合股 硬脂酸锌 G3 成缆废气、 S2-2 废活性炭、 成缆 调配 S3-1 废过滤棉 G4 成缆废气、 烘干 G1 投料粉尘、G2 搅拌 ► S2-3 废活性炭、 废气、S1-1 除尘灰、 S3-2 废过滤棉 S2-1 废活性炭 挤出 G5 油墨废气、 图例 喷码油墨: 喷码 --▶ S2-4 废活性炭 G--废气 G6 涂塑废气、 塑料粒子。 涂塑(部分) - ► S2-4 废活性炭 S----固废 包装 切割 木板 G7 切割粉尘、 入库 S1-2 除尘灰

主要工艺流程及产物环节(附处理工艺流程图,标出产污节点)

图 2-2 本项目生产工艺流程及产污过程图

工艺流程简述

- (1)调配:将购来的乙烯基脂树脂、过氧化二苯甲酰、过氧化苯甲酰叔丁酯、重钙和硬脂酸锌按照一定比例人工投料至搅拌机,在搅拌机中搅拌混合均匀,搅拌过程为常温,搅拌机加盖。搅拌完成后,将配料装桶运至各条生产线。此工序有少量投料粉尘 G1、搅拌废气 G2、除尘灰 S1-1、废活性炭 S2-1 产生。
- (2) 合股:通过合并机将多根单股玻璃纤维合并成一股胶合纤维,主要目的是增加光纤的传输容量。
- (3) 成缆:在成缆机中将合股后的玻璃纤维通过调配好的树脂溶液,使之表面充分包裹形成树脂包裹层,此工序会产生成缆废气 G3、废活性炭 S2-2、废过滤棉 S3-1。
- (4) 烘干:将成缆后的玻璃纤维通过电加热烘干机对工件进行烘干固化(烘干温度 200℃),以增强光缆的机械强度,防止弯曲和打扭,此工序会产生烘干废气 G4、废活性炭 S2-3、废过滤棉 S3-2。

- (5) 挤出: 通过挤出机将烘干后的玻璃纤维材料挤出收卷到木盘上。
- (6) 喷码:利用喷码机将油墨喷涂到玻璃纤维材料上,用来计数长度。喷码过程为常温,此工序会产生油墨废气 G5、废活性炭 S2-4。
- (7)涂塑: 部分产品利用涂塑机进行涂塑,涂塑温度 120℃,此工序会产生涂塑废气 G6、废活性炭 S2-5。
- (8) 切割: 将外购的木板通过切割机切割成需要的尺寸备用,此工序会产生切割粉尘 G7、除尘灰 S1-2。
- (9)包装、入库:部分产品需要用托盘进行固定后再装箱,将切割后木板组装成托盘固定产品,装箱后入库待售。

本项目一阶段主要生产设备见表 2-3。

表 2-3 主要设备一览表

 名称	环评		项目一阶段	及实际建设情况	
171W	规格 (型号)	数量(台/套)	规格型号	数量(台/套)	变化量
搅拌机	非标	10	非标	10	0
合并机	非标	146	非标	76	-70
成缆机	非标	146	非标	76	-70
挤出机	非标	146	非标	76	-70
烘干机	非标	146	非标	76	-70
树脂槽	非标	146	非标	76	-70
涂塑机	非标	5	非标	5	0
喷码机	定制	20	定制	20	0
切割机	定制	5	定制	5	0
空压机	定制	10	定制	10	0

以上减少的生产设备,在项目二阶段建设。

表三

主要污染源、污染物处理和排放(附处理流程示意图,标出废水、废气、厂界噪声监测点位) 1、废水

项目一阶段不产生生产废水,生活污水经化粪池处理后接管黄桥工业园区污水处理厂深度处理。

2、废气

项目一阶段产生的废气包括:投料粉尘、搅拌废气、喷墨废气、涂塑废气、成缆烘干废气、 危废暂存间废气及木板切割粉尘。

- (1) 有组织废气:
- ①投料粉尘、搅拌废气、喷墨废气、涂塑废气和危废暂存间废气经集气罩收集后通过布袋除尘+过滤棉+二级活性炭装置处理,处理后的废气经1根15m高(1#)排气筒排放。
- ②成缆烘干废气经管道收集后通过过滤棉+二级活性炭装置处理,处理后的废气分别经 3 根 15m 高(2#、3#、4#)排气筒排放。
 - (2) 无组织废气:
 - ①未收集的投料粉尘、搅拌废气、喷墨废气、涂塑废气、成缆烘干废气车间内无组织排放。
 - ②切割粉尘经布袋除尘器处理后车间无组织排放。

3、噪声

项目一阶段噪声来源于成缆机、挤出机、搅拌机、切割机、空压机等设备运行时产生的噪声,噪声源强度介于70~85dB(A)之间,通过配制低噪声设备、减振、将其封闭于室内等隔音降噪措施后,降低其对周围环境的影响。

4、固废

项目一阶段产生的固废包括投料车间除尘灰、废包材、废过滤棉、废包装桶、废活性炭、木板切割工段除尘灰和生活垃圾。其中废过滤棉、废包装桶、废活性炭属危险废物,收集后委托泰州市绿林环保科技有限公司处置;投料车间除尘灰收集后回用于生产;废包材、木板切割工段除尘灰属一般废物,收集后外售综合利用;生活垃圾交由环卫部门清运。各类固体废物经分类处理后对周围环境影响较小。

建设项目环境影响报告表主要结论及审批部门审批决定:

1、建设项目环境影响报告表主要结论:

江苏泓博新材料有限公司位于泰兴市黄桥工业园区兴园路以南、永丰路以东,拟投资建设年产 500 万千米光缆加强芯项目。项目符合国家和地方产业政策要求,用地为工业用地,在落实本报告提出的各项污染防治措施、严格执行"三同时"制度的情况下,各类污染物经有效处理后对外环境影响较小,不会降低区域功能类别,环境风险水平可以接受,从环保角度分析,本项目的建设具备环境可行性。

2、审批部门审批决定:

	环评批复要求	执行情况	
1	严格按照《报告表》中所述的产品方 案、设备、原料、工艺及布局等设计 和建设,不得擅自改变。	本项目一阶段严格按照《报告表》进 行建设、生产,没有擅自改变产品方 案、设备、原料、工艺及布局。	
2	采用先进的生产设备和工艺,将清洁生产、节能降耗和循环经济理念贯穿于生产全过程,加强生产管理,将污染物排放降至最低程度。	本项目已采用先进的生产设备和工艺,并将清洁生产、节能降耗和循环经济理念贯穿于生产全过程,加强生产管理,努力将污染物排放降至最低程度。	己落实
3	严格执行"清污分流、雨污分流", 本项目不产生生产性废水;生活污水 经化粪池处理后接管至黄桥工业园 区污水处理厂深度处理。	本项目一阶段已实行"清污分流、雨污分流",不产生生产性废水;生活污水经化粪池处理后接管至黄桥工业园区污水处理厂深度处理。	已落实
4	落实废气污染防治措施,进一步优化废气处理方案。投料粉尘、搅拌废气、喷墨废气、涂塑废气和危废暂存间废气经集气罩收集后通过布袋除尘+二级活性炭装置处理,处理后的废气经15m高1#排气筒排放;成缆、烘干废气经管道收集后通过过滤棉+二级活性炭装置处理,处理后的废气分别经6根15m高2#、3#、4#、5#、6#、7#排气筒排放。加强管理,严格控制无组织废气产生量。废气排放按照《报告表》要求执行《大气污染物综合排放标准》(DB32/4041-2021)表1、表2、表3标准。	本次监测结果表明,投料粉尘、搅拌废气、喷墨废气、涂塑废气和危废暂存间废气经集气罩收集后通过布袋除尘+过滤棉+二级活性炭装置处理,处理后的废气经15m高1#排气筒排放,1#排气筒非甲烷总烃、颗粒物、苯乙烯排放浓度和速率均符合《大气污染物综合排放标准》(DB32/4041-2021)表1标准;成缆、烘干废气经管道收集后通过过滤棉+二级活性炭装置处理,处理后的废气分别经3根15m高2#、3#、4#排气筒苯乙烯排放浓度和速率均符合《大气污染物综合排放标准》(DB32/4041-2021)表1标准。	己落实
5	通过合理规划生产布局,选用低噪声设备,采取隔声减振降噪等措施,厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)表1中3类标准。	本次监测结果表明,本项目厂界噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)表1的3类标准。	已落实

6	则,对运营过程中产生的各类固废妥善处理或综合利用。危险废物须委托有资质单位处置或综合利用,并按规定办理转移手续;一般固废按照《报告表》要求落实处置方式。一般废物临时堆场和危险废物堆场应分别严格按照《一般工业固体废物贮存和填埋污染控制标准》(GB18597-2001,2013年修订)要求建设,采取防雨淋、防药散、防渗漏、防流失等措施。废物临时堆场均应按照《环境保护图形-固体废物贮存(处置场)》(GB15622.2-1995)要求设置环保标志牌。严格执行危险废物管理制度,强化危险废物暂存及运输的环境保护措施,确保暂存及运输过程不发生环境安全事故。	项目一阶段产生的固废包括投料车间除尘灰、废包材、废过滤棉、废包装桶、废色装桶、废话性炭、木板切割工段除尘灰和生活垃圾。其中废过滤棉、废包装桶、废活性炭属危险废物,收集后委托泰州市绿林环保科技有限公司开生产;废包材、木板切割工段除尘灰属一般废物,收集后外售综合利用;生活垃圾交由环卫部门清运。本项目建有10m³的危险废物暂存库,符合《危险废物贮存污染控制标准》(GB18597-2001,2013年修订)要求,并按要求设置了环保标志牌。所有危险废物均签订了处置协议,严格按照国家和省市相关要求执行危险废物管理制度,保证危险废物暂存及运输。	已落实
7	落实环境风险应急措施及《报告表》中提出的其他要求和各项建议。	企业已编制了突发环境事件应急预 案,并在泰州市泰兴生态环境局备案 (备案号: 321283-2022-110-L),项 目一阶段已落实《报告表》中提出的 其他要求和各项建议。	己落实

表五

验收监测质量保证及质量控制:

1、监测分析方法:

表 5-1 监测分析方法

类别	项目	监测方法	方法来源	检出限
	pH 值	水质 pH 值的测定 电极法	НЈ 1147-2020	-
	化学需氧量	水质 化学需氧量的测定 重铬酸盐法	НЈ 828-2017	4 mg/L
-1-	氨氮	水质 氨氮的测定 纳氏试剂分光光度法	НЈ 535-2009	0.025 mg/L
废水	总磷	水质 总磷的测定 钼酸铵分光光度法	GB/T 11893-1989	0.01 mg/L
	悬浮物	水质 悬浮物的测定 重量法	GB/T 11901-1989	4 mg/L
	总氮	水质 总氮的测定 碱性过硫酸钾消解紫 外分光光度法	НЈ 636-2012	0.05 mg/L
成長	颗粒物	固定污染源排气中颗粒物测定与气态污 染物采样方法	GB/T 16157-1996	20mg/m ³
废气 (有组 织)	非甲烷总烃	固定污染源废气 总烃、甲烷和非甲烷总 烃的测定 气相色谱法	НЈ 38-2017	0.07 mg/m ³
纤)	苯乙烯	固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法	НЈ 734-2014	$0.004 \\ \text{mg/m}^3$
	颗粒物	环境空气 总悬浮颗粒物的测定 重量法	GB/T 15432-1995	0.001 mg/m3
废气 (无组	非甲烷总烃	固定污染源废气 总烃、甲烷和非甲烷总 烃的测定 直接进样—气相色谱法	НЈ 604-2017	0.07 mg/m ³
织)	苯乙烯	固定污染源废气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法	НЈ 644-2013	0.6μg/m ³
噪声	噪声	工业企业厂界环境噪声排放标准	GB 12348-2008	-

2、监测仪器

表 5-2 监测仪器一览表

序号	名称	型号	编号
1	气质谱联用仪	Panna 91 Plus AMD5	TK-fx-jd-sp-020
2	pH计	pH-100	TK-xc-jd-w-019-6
3	滴定管	50ml	TK-fx-jd-cg-022-1
4	万分之一天平	ME204E	TK-fx-jd-cg-072
5	紫外可见分光光度计	T6 新世纪	TK-fx-jd-cg-049
6	可见分光光度计	721G	TK-fx-jd-cg-074
7	气相色谱仪	磐诺 A91	TK-fx-jd-sp-019

3、人员能力

项目负责人与现场监测负责人均通过环境监测总站培训并持有合格证书。

4、废气监测质量控制

废气验收监测质量控制与质量保证按照《固定源废气监测技术规范》(HJ/T397-2007)、《固

定污染源监测质量保证与质量控制技术规范(试行)》(HJ/T373-2007)、《大气污染物无组织
排放监测技术导则》(HJ/T55-2000)中有关规定执行。尽量避免被测排放物中共存污染物因子
对仪器分析的交叉干扰;被测排放物的浓度应在仪器测试量程的有效范围即仪器量程的30~70%
之间。对采样仪器的流量计定期进行校准。
5、厂界噪声监测质量控制
测量仪器和校准仪器定期检验合格,并在有限期内使用;每次测量前、后在测量仪器进行
声学校准,其前、后校准示值偏差不大于 0.5dB。
7 1 民間 八間 1 日民間外間側空中八寸 0.500

表六

验收监测内容:

1、废水监测内容

表 6-1 废水监测内容表

类别	监测点位	监测项目	监测频次
废水	生活污水总排口	pH、COD、SS、氨氮、总磷、总氮	2天3次,每次一个样品

2、废气监测内容

表 6-2 废气监测内容表

监测内容	监测项目	监测点位	监测频次
1#排气筒	非甲烷总烃、颗 粒物、苯乙烯	1#排气筒进气口、出气口	连续两天,每天3次
2#排气筒	苯乙烯	2#排气筒进气口、出气口	连续两天,每天3次
3#排气筒	苯乙烯	3#排气筒进气口、出气口	连续两天,每天3次
4#排气筒	苯乙烯	4#排气筒进气口、出气口	连续两天,每天3次
无组织废 气	非甲烷总烃、颗 粒物、苯乙烯	厂界上风向1个点、下风向3个点	连续两天,每天4次

3、噪声监测内容

表 6-3 噪声监测内容表

监测点位	监测项目	监测频次
东厂界外 1m N1		
南厂界外 1m N2	區書 I oc (A)	昼夜各1次,共2天
西厂界外 1m N3	噪声 Leq(A)	□ 生仪台 I (人,共 2 人
北厂界外 1m N4		

表七

验收监测期间生产工况记录:

名称	设计生产量 (万千米/年)	设计生产时 间(天/年)	设计生产量 (万千米/天)	监测日期	实际生产量 (万千米)	生产负荷
光缆加强芯	200	300	0.667	2022.5.12	0.53	79.5%
九规加强心	200	300	0.007	2022.5.13	0.51	76.5%

验收监测结果:

1、废水监测结果及评价

结果表明: 2022 年 5 月 12~13 日,厂区生活污水排口 pH 值范围及化学需氧量、悬浮物、 氨氮、总磷、总氮排放浓度符合黄桥工业园区污水处理厂接管标准,监测结果见表 7-1。

采样点位	采样时间	pН	COD	SS	氨氮	TP	总氮
	2022-5-12 频次一	7.1	37	25	14.6	0.41	43.3
	2022-5-12 频次二	7.1	35	23	14.8	0.40	43.5
厂区生活	2022-5-12 频次三	7.2	36	26	14.7	0.43	42.6
污水排口	日均值或范围	6.14~6.19	50	25	14.7	0.41	43.1
	执行标准	6-9	500	400	35	8	45
	是否达标	是	是	是	是	是	是
	2022-5-13 频次一	7.2	41	21	13.8	0.40	41.6
	2022-5-13 频次二	7.1	42	23	13.7	0.41	41.4
厂区生活	2022-5-13 频次三	7.1	43	20	13.8	0.42	42.2
污水排口	日均值或范围	7.1-7.2	42	21	13.8	0.41	41.7
	执行标准	6-9	500	400	35	8	45
	是否达标	是	是	是	是	是	是

表 7-1 废水监测结果统计表(单位: mg/L, pH 无量纲)

2、废气监测结果与评价:

结果表明: 2022 年 5 月 12~13 日 1#排气筒排放的非甲烷总烃、颗粒物、苯乙烯排放浓度和排放速率均符合《大气污染物综合排放标准》(DB32/4041-2021)表 1 大气污染物有组织排放限值,监测数据见表 7-2~7-5; 2#排气筒排放的苯乙烯排放浓度和排放速率均符合《大气污染物综合排放标准》(DB32/4041-2021)表 1 大气污染物有组织排放限值,监测数据见表 7-6~7-9; 3#排气筒排放的苯乙烯排放浓度和排放速率均符合《大气污染物综合排放标准》

(DB32/4041-2021)表 1 大气污染物有组织排放限值,监测数据见表 7-10~7-15; 4#排气筒排放的苯乙烯排放浓度和排放速率均符合《大气污染物综合排放标准》(DB32/4041-2021)表 1 大气污染物有组织排放限值,监测数据见表 7-16~7-19; 厂界颗粒物排放浓度最高值为 0.486mg/m³,符合《大气污染物综合排放标准》 (DB32/4041-2021)表 3 单位边界大气污染物排放监控浓度限

值,厂界非甲烷总烃排放浓度最高值为 1.83mg/m³,符合《大气污染物综合排放标准》 (DB32/4041-2021)表 3 单位边界大气污染物排放监控浓度限值,厂界苯乙烯排放浓度低于检出限,符合《大气污染物综合排放标准》 (DB32/4041-2021)表 3 单位边界大气污染物排放监控浓度限值,厂房外无组织非甲烷总烃 1h 平均浓度值最高值为 1.90mg/m³,符合《大气污染物综合排放标准》 (DB32/4041-2021)表 2 厂区内 VOCs 无组织排放限值,监测数据见表 7-20~7-23。

表 7-2 1#排气筒进口废气监测结果 1

监测	点位	1#排气筒进口 G1-1 排气筒高		排气筒高度	-	
处理	处理设施		-	采样日期	2022.0	05.12
监测	项目	单位	第一次	第二次	第三次	参考标准
烟道	截面积	m ²	0.126	0.126	0.126	-
烟气	含湿量	%	2.8	2.6	2.7	-
烟气	〔流速	m/s	8.9	9.0	8.9	-
测态	测态烟气量		4018	4077	4018	-
标态	烟气量	Nm ³ /h	3654	3716	3656	-
颗粒物	排放浓度	mg/m ³	64	58	69	-
秋松初	排放速率	kg/h	0.234	0.216	0.252	-
非甲烷	排放浓度	mg/m ³	29.4	22.8	18.2	-
总烃	排放速率	kg/h	0.107	8.47×10 ⁻²	6.65×10 ⁻²	-
サフ 必	排放浓度	mg/m ³	ND	ND	ND	-
苯乙烯	排放速率	kg/h	1.46×10 ⁻⁵	1.49×10 ⁻⁵	1.46×10 ⁻⁵	-

表 7-3 1#排气筒出口监测结果 1

监测	点位	1#排*	气筒出口 G1-2	排气筒高度	15n	n
处理	里设施	布袋除尘+过滤棉+二级 活性炭		采样日期	2022.05.12	
监测	项目	单位	第一次	第二次	第三次	参考标准
烟道	截面积	m^2	0.503	0.503	0.503	-
烟气	含湿量	%	2.6	2.4	2.5	-
烟气	〔流速	m/s	2.3	2.3	2.2	-
测态	烟气量	m ³ /h	4071	4131	3932	-
标态	烟气量	Nm ³ /h	3709	3770	3582	-
颗粒物	排放浓度	mg/m ³	<20	<20	<20	20
机化化	排放速率	kg/h	<7.42×10 ⁻²	<7.54×10 ⁻²	<7.16×10 ⁻²	1
非甲烷	排放浓度	mg/m ³	10.8	7.54	9.64	60
总烃 排放速率		kg/h	4.01×10 ⁻²	2.84×10-2	3.45×10 ⁻²	3
苯乙烯	排放浓度	mg/m ³	ND	ND	ND	25
平 乙烯	排放速率	kg/h	<1.48×10 ⁻⁵	<1.51×10 ⁻⁵	<1.43×10 ⁻⁵	1.6

	表 7-4 1#排气筒进口废气监测结果 2								
监测	点位	1#排	气筒进口 G1-1	排气筒高度	-				
处理	里设施		-	采样日期	2022.0	05.13			
监测	项目	单位	第一次	第二次	第三次	参考标准			
烟道	截面积	m^2	0.126	0.126	0.126	-			
烟气含湿量		%	2.6	2.7	2.5	-			
烟气流速		m/s	9.0	9.2	9.1	-			
测态	烟气量	m ³ /h	4038	4169	4096	-			
标态	烟气量	Nm ³ /h	3725	3793	3733	-			
田至小子中四	排放浓度	mg/m ³	59	58	62	-			
颗粒物	排放速率	kg/h	0.220	0.220	0.231	-			
非甲烷	排放浓度	mg/m ³	44.2	35.4	33.8	-			
总烃	排放速率	kg/h	0.165	0.134	0.126	-			
せっぴ	排放浓度	mg/m ³	ND	ND	ND	-			
苯乙烯	排放速率	kg/h	1.49×10-5	1.52×10 ⁻⁵	1.49×10 ⁻⁵	-			

表 7-5 1#排气筒出口监测结果 2

监测	点位	1#排4	气筒出口 G1-2	排气筒高度	15n	n
处理	里设施	布袋除尘+过滤棉+二级 活性炭		采样日期	2022.05.13	
监测	削项目	单位	第一次	第二次	第三次	参考标准
烟道	截面积	m ²	0.503	0.503	0.503	-
烟气	含湿量	%	2.3	2.5	2.2	-
烟气	〔流速	m/s	2.3	2.1	2.2	-
测态	烟气量	m ³ /h	4100	3861	3975	-
标态	烟气量	Nm ³ /h	3750	3525	3636	-
颗粒物	排放浓度	mg/m ³	<20	<20	<20	20
秋松初	排放速率	kg/h	<7.50×10 ⁻²	<7.05×10 ⁻²	<7.27×10 ⁻²	1
非甲烷	排放浓度	mg/m ³	7.27	6.72	7.02	60
总烃 排放速率		kg/h	2.73×10 ⁻²	2.37×10-2	2.55×10 ⁻²	3
型フ 烃	排放浓度	mg/m ³	ND	ND	ND	25
苯乙烯	排放速率	kg/h	<1.50×10 ⁻⁵	<1.41×10 ⁻⁵	<1.45×10 ⁻⁵	1.6

监测	 J点位	2#排	气筒进口 G2-1	排气筒高度	_	
	 设施	4	-	采样日期	2022.05.12	
		单位	 第一次	第二次	第三次	参考标准
	<u> </u>	m^2	0.503	0.503	0.503	-
		%	2.8	2.7	2.9	-
	 〔流速	m/s	3.3	3.0	3.1	-
	烟气量	m ³ /h	5916	5427	5657	-
标态	烟气量	Nm ³ /h	5375	4939	5139	-
	排放浓度	mg/m ³	ND	ND	ND	-
苯乙烯	排放速率	kg/h	2.15×10 ⁻⁵	1.98×10 ⁻⁵	2.06×10 ⁻⁵	-
		3	表 7-7 2#排气筒	出口监测结果1		
监测	监测点位		气筒出口 G2-2	排气筒高度	151	n
处理	里设施	过滤	棉+二级活性炭	采样日期	2022.0	05.12
监测	项目	单位	第一次	第二次	第三次	参考标准
烟道	截面积	m^2	0.636	0.636	0.636	-
烟气	含湿量	%	2.8	2.7	2.7	-
烟气	〔流速	m/s	2.5	2.6	2.5	-
测态	烟气量	m ³ /h	5736	5943	5699	-
标态	烟气量	Nm ³ /h	5218	5411	5187	-
せっ必	排放浓度	mg/m ³	ND	ND	ND	25
苯乙烯	排放速率	kg/h	<2.09×10 ⁻⁵	<2.16×10 ⁻⁵	<2.07×10 ⁻⁵	1.6
		表	7-8 2#排气筒进	口废气监测结果	2	
监测	点位	2#排	气筒进口 G2-1	排气筒高度	-	
处理	里设施		-	采样日期	2022.0)5.13
监测	项目	单位	第一次	第二次	第三次	参考标准
烟道截面积		m ²	0.503	0.503	0.503	-
烟气含湿量		%	2.6	2.8	2.6	-
烟气	〔流速	m/s	3.5	3.5	3.2 -	
测态	烟气量	m ³ /h	6398	6265	5877	-
标态	烟气量	Nm ³ /h	5834	5698	5357	-
苯乙烯	排放浓度	mg/m ³	ND	ND	ND	-
半口畑	排放速率	kg/h	2.33×10 ⁻⁵	2.28×10 ⁻⁵	2.14×10 ⁻⁵	_

				出口监测结果 2	1	
监测点位		2#排4	气筒出口 G2-2	排气筒高度	151	n
处理	里设施	过滤机	帛+二级活性炭	采样日期	2022.05.13	
监测	可项目	单位	第一次	第二次	第三次	参考标准
烟道	截面积	m ²	0.636	0.636	0.636	-
烟气	含湿量	%	2.7	2.6	2.5	-
烟气	〔流速	m/s	2.6	2.3	2.4	-
测态	烟气量	m ³ /h	5853	5274	5399	-
标态	烟气量	Nm ³ /h	5327	4802	4923	-
苯乙烯	排放浓度	mg/m ³	ND	ND	ND	25
平乙师	排放速率	kg/h	<2.13×10 ⁻⁵	<1.92×10 ⁻⁵	<1.97×10 ⁻⁵	1.6
		表 7	7-10 3#排气筒进	口废气监测结果	1	
监测	点位	3#排4	气筒进口 G3-1	排气筒高度	-	
处理	里设施		-	采样日期	2022.0	05.12
监测	可项目	单位	第一次	第二次	第三次	参考标准
烟道	截面积	m^2	0.503	0.503	0.503	-
烟气	含湿量	%	2.6	2.5	2.6	-
烟气	〔流速	m/s	5.4	5.4	5.4	-
测态:	烟气量	m ³ /h	9751	9734	9748	-
标态	烟气量	Nm ³ /h	8886	8876	8877	-
苯乙烯	排放浓度	mg/m ³	ND	ND	ND	
平乙师	排放速率	kg/h	3.55×10 ⁻⁵	3.55×10 ⁻⁵	3.55×10 ⁻⁵	
		表 7	7-11 3#排气筒进	口废气监测结果	2	
监测	点位	3#排4	气筒进口 G3-2	排气筒高度	-	
处理	里设施		-	采样日期	2022.0	05.12
监测	可项目	单位	第一次	第二次	第三次	参考标准
烟道	截面积	m ²	0.503	0.503	0.503	
烟气含湿量		%	2.7	2.6	2.7	_
烟气流速		m/s	5.3	5.3	5.4	
测态	烟气量	m ³ /h	9567	9602	9686 -	
标态	烟气量	Nm ³ /h	8712	8753	8811	
サフ 烃	排放浓度	mg/m ³	ND	ND	ND	
苯乙烯	排放速率	kg/h	3.48×10-5	3.50×10 ⁻⁵	3.52×10 ⁻⁵	

监 测	 点位	3#排	气筒出口 G3-3	排气筒高度	151	n
	·····— 望设施	过滤棉+二级活性炭		采样日期	2022.0	
	 项目	单位	第一次	第二次	第三次	参考标准
	 截面积	m^2	1.131	1.131	1.131	-
烟气		%	2.6	2.5	2.4	-
烟气	 〔流速	m/s	5.0	4.7	4.8	-
测态:	烟气量	m ³ /h	20214	19315	19403	-
标态	烟气量	Nm ³ /h	18400	17607	17724	-
11 12	排放浓度	mg/m ³	ND	ND	ND	25
苯乙烯	排放速率	kg/h	<7.36×10 ⁻⁵	<7.04×10 ⁻⁵	<7.09×10 ⁻⁵	1.6
		表 ′	7-13 3#排气筒进	口废气监测结果	3	
监测	点位	3#排	气筒进口 G3-1	排气筒高度	-	
处理	2设施		-	采样日期	2022.0)5.13
监测	项目	单位	第一次	第二次	第三次	参考标准
烟道	截面积	m^2	0.503	0.503	0.503	-
烟气	含湿量	%	2.8	2.7	2.6	-
烟气	〔流速	m/s	5.5	5.1	5.2	-
测态	烟气量	m ³ /h	9957	9275	9409	-
标态	烟气量	Nm ³ /h	9054	8437	8565	-
苯乙烯	排放浓度	mg/m ³	ND	ND	ND	
平口师	排放速率	kg/h	3.62×10 ⁻⁵	3.37×10 ⁻⁵	3.43×10 ⁻⁵	
		表 ′	7-14 3#排气筒进	口废气监测结果	4	
监测	点位	3#排	气筒进口 G3-2	排气筒高度	-	
处理	1设施		-	采样日期	2022.0	05.13
监测	项目	单位	第一次	第二次	第三次	参考标准
烟道	截面积	m ²	0.503	0.503	0.503	-
烟气含湿量		%	2.5	2.4	2.5	-
烟气流速		m/s	5.1	5.2	5.0	-
测态烟气量		m ³ /h	9304	9417	9067	-
标态	烟气量	Nm ³ /h	8489	8599	8279	-
苯乙烯	排放浓度	mg/m ³	ND	ND	ND	
平厶师	排放速率	kg/h	3.40×10 ⁻⁵	3.44×10 ⁻⁵	3.31×10 ⁻⁵	

监测	点位	3#排4	气筒出口 G3-3	排气筒高度	15n	n	
处理设施		过滤棉+二级活性炭		采样日期	2022.05.13		
 监测项目		单位	第一次	第二次	第三次	参考标准	
烟道	截面积	m ²	1.131	1.131	1.131	-	
烟气	含湿量	%	2.6	2.7	2.8	-	
烟气流速		m/s	5.0	4.4	4.4	-	
测态:	烟气量	m ³ /h	20460	17936	17895	-	
标态	烟气量	Nm ³ /h	18650	16339	16268	-	
サフド	排放浓度	mg/m ³	ND	ND	ND	25	
苯乙烯	排放速率	kg/h	<7.46×10 ⁻⁵	<6.54×10 ⁻⁵	<6.84×10 ⁻⁵	1.6	
	•	表 7	7-16 4#排气筒进	口废气监测结果	1		
监测	点位	4#排4	气筒进口 G4-1	排气筒高度	-		
处理	里设施		-	采样日期	2022.0	5.12	
监测	项目	单位	第一次	第二次	第三次	参考标准	
烟道	截面积	m ²	0.503	0.503	0.503	-	
烟气	含湿量	%	2.6	2.5	2.6	-	
烟气	〔流速	m/s	5.8	5.9	5.7	-	
测态	烟气量	m ³ /h	10407	10705	10396	-	
标态	烟气量	Nm ³ /h	9486	9765	9466	-	
苯乙烯	排放浓度	mg/m ³	ND	ND	ND	-	
平口师	排放速率	kg/h	3.79×10 ⁻⁵	3.91×10 ⁻⁵	3.79×10 ⁻⁵	-	
		1	長7-17 4#排气筒	出口监测结果1			
监测	点位	4#排4	气筒出口 G4-2	排气筒高度	15m		
处理	里设施	过滤机	帛+二级活性炭	采样日期	2022.0	5.12	
监测	项目	单位	第一次	第二次	第三次	参考标准	
烟道截面积		m ²	0.636	0.636	0.636	-	
烟气含湿量		%	2.5	2.6	2.8	-	
烟气流速		m/s	4.6	4.6	4.6	-	
测态烟气量		m ³ /h	10645	10448	10430	-	
标态烟气量		Nm ³ /h	9707	9511	9479	-	
ギフ 経	排放浓度	mg/m ³	ND	ND	ND	25	
苯乙烯	排放速率	kg/h	<3.88×10 ⁻⁵	<3.80×10 ⁻⁵	<3.79×10 ⁻⁵	1.6	

	i占份	表生	与偽洪口	C4-1	排	气筒高度	_		
监测点位		-4 11,1√1	4#排气筒进口 G4-1				2022	25.10	
处理设施			-			ド 样日期	2022.0		
监测项目		单位	第一	一次		第二次	第三次	参考标准	
烟道	截面积	m^2	0.5	603		0.503	0.503	-	
烟气	含湿量	%	2.	.4		2.6	2.5	-	
烟气	〔流速	m/s	5.9			6.2	6.1	-	
测态	烟气量	m ³ /h	10734			11221	11030	-	
标态	烟气量	Nm ³ /h	9804			10220	10061	-	
	排放浓度	mg/m ³				ND	ND	-	
苯乙烯	排放速率	kg/h	3.92>	×10 ⁻⁵	4.09×10 ⁻⁵		3.98×10 ⁻⁵	_	
	711/2000	Ŭ				<u></u>			
]点位	1			1	气筒高度	15	m	
	3 <u>-</u> 里设施		非气筒出口 G4-2 		-	R样日期	2022.05.13		
	·	单位	第一次			第二次		参考标准	
	截面积	m ²	0.503			0.503	0.503	- 2 Miller	
	含湿量	%	2.6			2.5	2.5	_	
	 〔流速	m/s	4.4			4.5	4.7	_	
	烟气量	m ³ /h	10024			10289	10851	_	
	烟气量	Nm ³ /h	91	9125		9382	9892	_	
	mg/m ³	mg/m ³	ND			ND	ND	25	
苯乙烯	kg/h	kg/h	3.65>	<10 ⁻⁵	3	.75×10 ⁻⁵	3.96×10 ⁻⁵	1.6	
	表	7-20 厂						1	
监测 压测 压测 压测 压测 压测 压测 压测 压测 压		点位 -	上风向	下风向1		下风向 2	下风向3	小时最高 最大值	
			0.212	0.336		0.354	0.318		
颗粒物	2022-5-	12 	0.250		0	0.426	0.408	0.486	
					1	0.464 0.486	0.446	-	
	<u>_</u> 示准值	'	0.270	0.43		0.480	0.468		
监测点		点位 -	上风向 下风				下风向3	小时最高 最大值	
颗粒物			0.195 0.320		0	0.373	0.337		
	2022-5-13	13	0.214	0.37	4	0.409	0.356	0.468	
	2022-3-		0.233 0.394				0.394	0.400	
			0.252	0.43	L		0.450		
标准值			0.5						
评	价结果		<u></u>						

 監測項目 上风向 下风向 1 下风向 2 下风向 3 小时最高浓泉大値 非甲烷总烃 2022-5-12 1.01 1.30 1.34 1.59 0.75 1.07 1.33 1.39 1.83 1.69 1.83 1.39 1.83 1.69 1.83 1.32 1.40 1.33 1.39 1.83 1.60 1.07 1.33 1.38 1.39 小时最高浓泉大値 上风向 下风向 1 下风向 2 下风向 3 小时最高浓泉大値 非甲烷总烃 2022-5-13 1.05 1.34 1.28 1.35 1.45 1.42 1.45 1.42 1.45 1.42 1.45 1.42 1.45 1.42 1.28 1.35 1.27 1.30 1.38 1.45 1.42 1.45 1.42 1.45 1.42 1.45 1.42 1.45 1.42 1.45 1.42 1.28 1.35 1.12 1.28 1.28 1.27 1.30 1.38 1.46 1.49 1.28 1.35 1.41 1.45 1.42 1.45 1.42 1.45 1.42 1.45 1.42 1.45 1.42 1.45 1.42 1.45 1.40 1.90 1.05 1.34 1.28 1.35 1.40 1.90 1.84 1.40 1.90 1.84 1.84 1.84		表 7-21		甲烷总烃监	[测结果(单	≜位: m	g/m³)			
非甲烷总烃 2022-5-12 1.01 1.30 1.34 1.59 1.83 标准值 评价结果 0.75 1.07 1.33 1.39 1.83 监测项目 L风向 下风向1 下风向2 下风向3 小时最高浓最大值 排甲烷总烃 2022-5-13 0.97 1.30 1.45 1.42 1.45 1.05 1.34 1.28 1.35 1.45 1.12 1.32 1.28 1.27 蘇灣項目 上风向 下风向1 下风向2 下风向3 小时最高浓最大值 業人名 ND ND ND ND ND ND ND 上风向 下风向1 下风向2 下风向3 小时最高浓最大值 上风向 ND ND ND ND ND ND ND ND ND ND ND ND 水洋结果 上风向 下风向1 下风向2 下风向3 小时最高浓最大值 茶乙烯 上风向 下风向1 下风向2 下风向3 小时最高浓最大值 上风向 下风向 ND ND ND ND ND ND <td< td=""><td>监测项目</td><td>监测点位</td><td>上风向</td><td>下风向</td><td>1 下风1</td><td>句 2</td><td>下风</td><td>句 3</td><td>The state of the s</td></td<>	监测项目	监测点位	上风向	下风向	1 下风1	句 2	下风	句 3	The state of the s	
# 甲烷总烃	北田岭	2022-5-12	0.76	1.37	1.8	3	1.6	9		
1.28			1.01	1.30	1.3	4	1.5	9	1 02	
标准値 子	非中风总压		0.90	1.28	1.3	2	1.4	0	1.65	
選別項目			0.75	1.07	1.3	3	1.3	9		
塩渕項目		崖 值			4.0)				
上风向	评价									
非甲烷总烃 2022-5-13 0.97 1.30 1.45 1.42 1.05 1.34 1.28 1.35 1.12 1.32 1.28 1.27 标准值 4.0 遊标 苯乙烯二甲烷总烃 上风向 下风向1 下风向2 下风向3 小时最高浓最大值 苯乙烯 2022-5-12 ND ND ND ND ND ND ND ND ND ND ND 水准值 0.4 上风向 下风向1 下风向2 下风向3 小时最高浓最大值 水型介结果 ND ND ND ND ND ND 水砂结果 近标 表7-23 厂房外无组织非甲烷总烃 1h 平均浓度值监测结果(单位:mg/m³) 上级向 小时最高浓最大值 非甲烷总烃 2022-5-12 1.53 1.90 1.63 1.40 1.90 非甲烷总烃 2022-5-12 1.53 1.90 1.63 1.40 1.90 非甲烷总烃 2022-5-13 1.66 1.84 1.53 1.38 1.84 标值 子供 上版 上版 上版 上版 上版	监测项目	监测点位	上风向	下风向 [1 下风1	句 2	下风	句 3		
Temple			0.93	1.27	1.3	0	1.3	8		
1.05	ᆘᅩᅛᄼ	2022 5 12	0.97	1.30	1.4	5	1.4	2	1 45	
Fixe	非甲烷总烃	2022-5-13	1.05	1.34	1.2	8	1.3	5	1.45	
评价结果 达标 表7-22 厂界无组织苯乙烯监测结果(单位:mg/m³) 监测点位 监测项目 上风向 下风向 1 下风向 2 下风向 3 小时最高浓最大值 苯乙烯 ND			1.12	1.32	1.2	8	1.2	7		
表7-22 厂界无组织苯乙烯监测结果 (单位: mg/m³) 监测点位 监测项目 上风向 下风向 1 下风向 2 下风向 3 小时最高浓最大值 苯乙烯 2022-5-12 ND	标准	挂值		4.0						
监测项目 上风向 下风向 1 下风向 2 下风向 3 小时最高浓最大值 苯乙烯 2022-5-12 ND	评价	结果			达林	<u></u>				
監測項目 上风向 F风向1 F风向2 F风向3 最大值 苯乙烯 2022-5-12 ND ND ND ND ND ND ND 本工烯 監測点位 监测点位 监测点位 监测点位 监测点位 监测点位 监测点位 监测点位 图学的结果 上风向 下风向1 下风向2 下风向3 小时最高浓量大值 本乙烯 1022-5-13 ND		表 7-2								
苯乙烯 ND <	监测项目	监测点位	上风向	下风向	1 下风「	句 2	下风	句 3		
RD ND ND ND ND ND ND ND		2022-5-12	ND	ND	NE)	NI)		
ND	++ > 1×		ND	ND	NE)	NI)	ND	
标准值 0.4 评价结果 达标 监测点位 监测项目 上风向 下风向 1 下风向 2 下风向 3 小时最高浓最大值 苯乙烯 ND ND <td< td=""><td>本乙烯</td><td>ND</td><td>ND</td><td>NI</td><td>)</td><td>NI</td><td>)</td></td<>	本乙烯		ND	ND	NI)	NI)		
评价结果 达标 监测项目 上风向 下风向 1 下风向 2 下风向 3 小时最高浓最大值 苯乙烯 ND ND<			ND	ND	NI)	NI)		
监测项目上风向下风向 1下风向 2下风向 3小时最高浓量大值苯乙烯ND标准值0.4达标评价结果达标表7-23 厂房外无组织非甲烷总烃 1h 平均浓度值监测结果(单位: mg/m³)监测项目时间第一次第三次第四次小时最高浓最大值非甲烷总烃2022-5-121.531.901.631.401.90非甲烷总烃2022-5-131.661.841.531.381.84标准值6评价结果达标	标》	佳值								
监测项目 上风间 F风间 1 F风间 2 F风间 3 最大值 基乙烯 2022-5-13 ND N	评价	结果	达标							
苯乙烯 2022-5-13 ND ND ND ND ND ND ND ND ND ND ND 标准值 表7-23 厂房外无组织非甲烷总烃 1h 平均浓度值监测结果 (单位: mg/m³) 监测项目 时间 第一次 第三次 第四次 小时最高浓最大值 非甲烷总烃 2022-5-12 1.53 1.90 1.63 1.40 1.90 标准值 6 1.84 1.53 1.38 1.84 标准值 6 评价结果 达标	_		上风向	下风向	1 下风1	下风向 2 下风		句 3		
本乙烯 2022-5-13 ND ND ND ND ND 标准值 0.4 评价结果 达标 表7-23 厂房外无组织非甲烷总烃 1h 平均浓度值监测结果(单位: mg/m³) 监测项目 时间 第一次 第三次 第四次 小时最高浓最大值 非甲烷总烃 2022-5-12 1.53 1.90 1.63 1.40 1.90 非甲烷总烃 2022-5-13 1.66 1.84 1.53 1.38 1.84 标准值 6 评价结果 达标		2022-5-13	ND	ND	NE)	NI)		
ND ND ND ND ND ND ND ND	菜フ 烃		ND	ND	NI)	NI)	ND	
标准值 0.4	本乙州		ND	ND	NE)	NI)	ND	
评价结果达标表 7-23 厂房外无组织非甲烷总烃 1h 平均浓度值监测结果 (单位: mg/m³)监测项目时间第一次第三次第四次小时最高浓最大值非甲烷总烃2022-5-121.531.901.631.401.902022-5-131.661.841.531.381.84标准值6评价结果达标			ND	ND	NE)	NI)		
表 7-23 厂房外无组织非甲烷总烃 1h 平均浓度值监测结果(单位: mg/m³) 监测项目 时间 第一次 第三次 第四次 小时最高浓最大值 非甲烷总烃 2022-5-12 1.53 1.90 1.63 1.40 1.90 2022-5-13 1.66 1.84 1.53 1.38 1.84 标准值 6 评价结果 达标	-									
监测项目时间第一次第二次第三次第四次小时最高浓最大值非甲烷总烃2022-5-121.531.901.631.401.902022-5-131.661.841.531.381.84标准值6评价结果达标										
非甲烷总烃 2022-5-12 1.53 1.90 1.63 1.40 1.90 2022-5-13 1.66 1.84 1.53 1.38 1.84 标准值 6 评价结果 达标	表 7	-23 厂房外无	组织非甲烷总	总烃 1h 平均	浓度值监测	结果(单位:	mg/ı	m ³)	
非甲烷总烃 2022-5-13 1.66 1.84 1.53 1.38 1.84 标准值 6 评价结果 达标	<u>监测项目</u>	时间	第一次	第二次	第三次	第四	次	小时	最高浓最大值	
2022-5-13 1.66 1.84 1.53 1.38 1.84 标准值 6 评价结果 达标	非甲烷总烃			1.90						
评价结果			1.66	1.84	1.53	1.3	88		1.84	
	标准值		6							
			达标							

3、噪声监测结果与评价:

结果表明: 2022 年 5 月 12~13 日,项目一阶段正常生产,各噪声源运行正常。验收监测期间,昼间厂界噪声监测值范围 56.0dB(A)~57.1dB(A),夜间厂界噪声监测值范围 47.7dB(A)~48.7dB(A)满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准,监测结果

见表 7-24。

表 7-24 噪声监测结果评价表(单位: dB(A))

	测量值							
监测点位	昼	间	夜间					
	2022-5-12	2022-5-13	2022-5-12	2022-5-13				
厂界东侧 1m	56.5	56.7	48.4	48.0				
厂界南侧 1m	57.1	56.0	48.7	48.7				
厂界西侧 1m	57.1	56.5	47.7	48.1				
厂界北侧 1m	56.8	56.6	48.0	47.8				
标准限制	6	5	5	5				
达标情况	达标情况 达标		达标	达标				

验收监测结论:

江苏泓博新材料有限公司年产 500 万千米光缆加强芯项目一阶段,已基本按照国家环境管理制度执行,工程相应的环保设施与主体工程同时设计、同时施工、同时投入使用。验收监测期间,项目正常运营,各项环保设施运行正常,符合环保 "三同时"的验收监测要求。具体结论如下:

1、废气监测结果:

- (1) 1#排气筒排放的非甲烷总烃、颗粒物、苯乙烯排放浓度和排放速率均符合《大气污染物综合排放标准》(DB32/4041-2021)表 1 大气污染物有组织排放限值, 2#、3#、4#排气筒排放的苯乙烯排放浓度和排放速率均符合《大气污染物综合排放标准》(DB32/4041-2021)表 1 大气污染物有组织排放限值。
- (2) 厂界颗粒物、非甲烷总烃、苯乙烯排排放浓度符合《大气污染物综合排放标准》 (DB32/4041-2021)表 3 单位边界大气污染物排放监控浓度限值,厂房外无组织非甲烷总烃 1h 平均浓度值符合《大气污染物综合排放标准》(DB32/4041-2021)表 2 厂区内 VOCs 无组织排放限值。

2、噪声监测结果:

根据监测数据可知,验收监测期间厂界各监测点昼、夜间监测值均符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准。

3、废水监测结果:

根据监测数据可知,厂区生活污水排口 pH 值范围及化学需氧量、悬浮物、氨氮、总磷、总氮排放浓度符合黄桥工业园区污水处理厂接管标准。

4、固废

项目一阶段产生的固废包括投料车间除尘灰、废包材、废过滤棉、废包装桶、废活性炭、木板切割工段除尘灰和生活垃圾。其中废过滤棉、废包装桶、废活性炭属危险废物,收集后委托泰州市绿林环保科技有限公司处置;投料车间除尘灰收集后回用于生产;废包材、木板切割工段除尘灰属一般废物,收集后外售综合利用;生活垃圾交由环卫部门清运。

综上所述,江苏泓博新材料有限公司年产 500 万千米光缆加强芯项目一阶段已基本按照环评及其批复的要求进行建设,较好的落实了各项环保工程措施。项目一阶段废气、废水、噪声达标排放,固体废弃物妥善处置,不造成二次污染。本次竣工环境保护验收监测认为该项目一阶段符合竣工环境保护验收条件,建议通过验收。

建议和要求:

- (1) 进一步加强固体废物安全处置工作,确保环境安全;
- (2) 规范作业操作,减少无组织排放,定期进行无组织废气的日常监测;
- (3) 完善相关环保标志、标识。

附图:

附图 1 公司具体地理位置图

附图 2 厂区平面布置图

附图 3 项目周边环境保护目标图

附件:

附件1备案通知书

附件2环评批复

附件3验收检测报告

附件 4 危废处置协议

附件5突发环境事件应急预案备案表